Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.024 seconds
AbstractAbstract
[en] Among the different astrophysical plasmas, the solar wind and the planetary magnetosheaths represent the best laboratories for studying the properties of fully developed plasma turbulence. Because of the relatively weak density fluctuations (∼ 10%) in the solar wind, the low frequency fluctuations are usually described using the incompressible MHD theory. Nevertheless, the effect of the compressibility (in particular in the fast wind) has been a subject of active research within the space physics community over the last three decades. My thesis is essentially dedicated to the study of compressible turbulence in different plasma environments, the planetary magnetosheaths (of Saturn and Earth) and the fast and slow solar wind. This was done using in-situ spacecraft data from the Cassini, Cluster and THEMIS/ARTEMIS satellites. I first investigated the properties of MHD and kinetic scale turbulence in the magnetosheath of Saturn using Cassini data at the MHD scales and compared them to known features of the solar wind turbulence. This work was completed with a more detailed analysis performed in the magnetosheath of Earth using the Cluster data. Then, by applying the recently derived exact law of compressible isothermal MHD turbulence to the in-situ observations from THEMIS and CLUSTER spacecrafts, a detailed study regarding the effect of the compressibility on the energy cascade (dissipation) rate in the fast and the slow wind is presented. Several new empirical laws are obtained, which include the power-law scaling of the energy cascade rate as function of the turbulent Mach number. Eventually, an application of this exact model to a more compressible medium, the magnetosheath of Earth, using the Cluster data provides the first estimation of the energy dissipation rate in the magnetosheath, which is found to be up to two orders of magnitude higher than that observed in the solar wind. (author)
[fr]
Parmi les differents plasmas spatiaux, le vent solaire et les magnetogaines planetaires representent les meilleurs laboratoires pour l'etude des proprietes de la turbulence. Les fluctuations de densite dans le vent solaire etant faibles, a basses frequences ces dernieres sont generalement decrites par la theorie de la MHD incompressible. Malgre son incompressibilite, l'effet de la compressibilite dans le vent solaire a fait l'objet de nombreux travaux depuis des decennies, a la fois theoriques, numeriques et observationnels. Le but de ma these est d'etudier le role de la compressibilite dans les magnetogaines planetaires (de la Terre et de Saturne) en comparaison avec un milieu beaucoup plus etudie et moins compressible (quasi incompressible), le vent solaire. Ce travail a ete realise en utilisant des donnees in-situ de trois sondes spatiales, Cassini, Cluster et THEMIS B/ARTEMIS P1. La premiere partie de mon travail a ete consacree a l'etude des proprietes de la turbulence dans la magnetogaine de Saturne aux echelles MHD et sub-ionique, en comparaison avec celle de la Terre en utilisant les donnees Cassini et Cluster respectivement. Ensuite j'ai applique la loi exacte de la turbulence isotherme et compressible dans le vent rapide et lent en utilisant les donnees THEMIS B/ARTEMIS P1, afin d'etudier l'effet et le role de la compressibilite sur le taux de transfert de l'energie dans la zone inertielle. Enfin, une premiere application de ce modele dans la magnetogaine de la Terre est presentee en utilisant les donnees Cluster. (auteur)Original Title
Observations in-situ de la turbulence compressible dans les magnetogaines planetaires et le vent solaire
Primary Subject
Secondary Subject
Source
20 Sep 2016; 227 p; [270 refs.]; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses; These de doctorat, Specialite: Physique des Plasmas
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue