Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.024 seconds
AbstractAbstract
[en] Microbial Fuel Cells (MFCs) allow a portion of the energy contained in biodegradable substrates to be converted directly into electricity through the formation of an electroactive biofilm on the surface of their anode. Future energy harvesting solutions, these bioelectrochemical systems could thus, for example, be used for the autonomous power supply of sensors in isolated zone or be more generally located within wastewater treatment plants. Nevertheless, after about twenty years of development, the performances of PACMs tend to stagnate. The solution frequently used to improve their results is to develop new anode materials by optimizing their structure or their surface but very often neglecting the criteria of longevity, price and transferability on an industrial scale, essential for this application. The objective of this study is to propose efficient anodes, with a simple manufacturing process, cheap and stable over time. Consisting of entangled 304L stainless steel monofilaments, the anodes we develop were initially characterized mechanically (by odometrical compression) and from a microstructural point of view (by X-ray tomography). Then, their integration into prototypes of MFCs inoculated with activated sludge made it possible to measure the influence of various architectural parameters of the fuel cell (distance between electrodes, electrode surface,...) and of the anode ( pore size, wire diameter,...) on electrical performance, with the main objective of maximizing their specific surface area while limiting their clogging. Electrochemical impedance spectroscopy measurements were also carried out in order to study in more detail the different electrochemical phenomena involved. These innovative 3D anodes are promising because they have made it possible to obtain power densities of the order of 200 mW/m2 with an electrode cost, compared to the literature, considerably reduced. (author)
[fr]
Les Piles a Combustible Microbiennes (PACMs) permettent de convertir directement en electricite une partie de l'energie contenue dans des substrats biodegradables et ce, grace a la formation d'un biofilm electroactif a la surface de leur anode. Solutions de grapillage energetique d'avenir, ces systemes bioelectrochimiques pourraient ainsi, a titre d'exemple, servir a l'alimentation autonome de capteurs en zone isolee ou etre plus generalement implantes au sein de stations d'epuration. Neanmoins, apres maintenant une vingtaine d'annees de developpement, les performances des PACMs ont tendance a stagner. La solution frequemment retenue pour ameliorer leurs resultats est de developper de nouveaux materiaux d'anode en optimisant leur structure ou leur surface mais tres souvent en negligeant les criteres de longevite, de prix et de transposabilite a une echelle industrielle, essentiels pour cette application. L'objectif de cette etude est de proposer des anodes performantes, avec un procede de fabrication simple, bon marche et stables dans le temps. Constituees de monofilaments d'acier inoxydable 304L enchevetres, les anodes que nous developpons ont ete dans un premier temps caracterisees mecaniquement (par compression oedometrique) et d'un point de vue microstructural (par tomographie a rayons X). Puis, leur integration au sein de prototypes de PACMs inocules avec des boues activees a permis de mesurer l'influence de divers parametres architecturaux de la pile (distance inter-electrodes, surface d'electrodes,...) et de l'anode (taille de pores, diametre de fil,...) sur les performances electriques, avec comme objectif principal de maximiser leur surface specifique tout en limitant leur colmatage. Des mesures de spectroscopie d'impedance electrochimique ont egalement ete realisees afin d'etudier plus en detail les differents phenomenes electrochimiques entrant en jeu. Ces anodes 3D inedites s'averent prometteuses car elles ont permis d'obtenir des densites de puissance de l'ordre de 200 mW/m2 avec un cout d'electrode, comparativement a la litterature, considerablement diminue. (auteur)Original Title
Fabrication, caracterisation et integration de materiaux innovants pour electrodes de piles a combustible microbiennes
Primary Subject
Secondary Subject
Source
9 Nov 2018; 222 p; [350 refs.]; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses; These de Doctorat de l'Universite de Lyon, Specialite: Materiaux
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Report Number
Country of publication
ACTIVATED SLUDGE PROCESS, AMPEROMETRY, ANODES, BIOCHEMICAL FUEL CELLS, BIOLOGICAL FOULING, CHEMICAL REACTORS, COST ESTIMATION, ELECTRIC IMPEDANCE, ELECTROCHEMISTRY, ENERGY EFFICIENCY, EQUIVALENT CIRCUITS, MECHANICAL PROPERTIES, POLARIZATION, PORE STRUCTURE, POWER DENSITY, SPECIFIC SURFACE AREA, SPECTROSCOPY, STAINLESS STEEL-304L
ALLOYS, AUSTENITIC STEELS, CARBON ADDITIONS, CHEMICAL ANALYSIS, CHEMISTRY, CHROMIUM ALLOYS, CHROMIUM-NICKEL STEELS, CORROSION RESISTANT ALLOYS, DIRECT ENERGY CONVERTERS, EFFICIENCY, ELECTROCHEMICAL CELLS, ELECTRODES, ELECTRONIC CIRCUITS, FOULING, FUEL CELLS, HEAT RESISTANT MATERIALS, HEAT RESISTING ALLOYS, HIGH ALLOY STEELS, IMPEDANCE, IRON ALLOYS, IRON BASE ALLOYS, LOW CARBON-HIGH ALLOY STEELS, MANAGEMENT, MATERIALS, MICROSTRUCTURE, NICKEL ALLOYS, PHYSICAL PROPERTIES, PROCESSING, QUANTITATIVE CHEMICAL ANALYSIS, STAINLESS STEELS, STEEL-CR19NI10-L, STEELS, TITRATION, TRANSITION ELEMENT ALLOYS, VOLUMETRIC ANALYSIS, WASTE MANAGEMENT, WASTE PROCESSING
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue