Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] Magnesium metal is a prominent element for solid-state hydrogen storage due to its large abundance in earth's crust and its high weight and volumetric hydrogen uptakes. However, hydrogen sorption suffers from sluggish kinetics and the formed hydride is too stable for applications working under ambient conditions. The former issue can be solved by developing composites combining two hydrides, MgH2 and TiH2 at the nanoscale. These materials are synthesized by mechanical milling under reactive atmosphere. By this technique, the formation of nanocomposites and their hydrogenation can be obtained in a single-step. Moreover, these materials can be produced at large scale for application purposes. The work focused on three topics: i) the optimization of the TiH2 content in the (1- y)MgH2+yTiH2 system. This was accomplished by optimizing the titanium content (0.0125≤y≤0.3 mole), while keeping good kinetics, hydrogen reversibility and cycle-life. The data show that y=0.025 is the best compromise to fulfill the most practical properties; ii) the extension to other transition metals for the system 0.95MgH2 + 0.05TMHx (TM: Sc, Y, Ti, Zr, V and Nb), evaluating the contribution of each additive to kinetics, hydrogen reversibility and cycle-life; iii) the conception of an automatic cycling device able to carry out hundreds of sorption cycles whit the aim of measuring the cycle-life of metal hydrides. The work was done using manifold experimental methods. For synthesis, reactive ball milling under hydrogen atmosphere was primarily used. The crystal structure and the chemical composition of nanomaterials was determined from X-ray diffraction (XRD) analysis. Particle size and morphology were obtained by Scanning Electron Microscopy / Energy Dispersive X-Ray Spectroscopy (SEM/EDS). Thermodynamic, kinetic and cycling properties toward hydrogen sorption were determined by the Sieverts method. (author)
[fr]
Le magnesium est un element de choix pour le stockage de l'hydrogene a l'etat solide en raison de sa grande abondance dans la croute terrestre et de ses fortes capacites de sorption massique et volumetrique de l'hydrogene. Cependant, la reaction de sorption souffre d'une cinetique lente et l'hydrure forme est trop stable pour des applications fonctionnant sous conditions ambiantes. Le premier probleme peut etre resolu en developpant des composites associant deux hydrures, MgH2 et TiH2, a l'echelle nanometrique. Ces materiaux sont synthetises par broyage mecanique sous atmosphere reactive. Cette technique permet la formation des nanocomposites et leur hydrogenation en une seule etape. De plus, ces materiaux peuvent etre produits a grande echelle pour les besoins des applications. Les travaux ont ete menes en trois parties: i) l'optimisation de la teneur en TiH2 dans le systeme (1-y)MgH2+yTiH2. Ceci a ete accompli en ajustant la teneur en titane (0,0125 ≤ y ≤ 0,3 mole), tout en conservant une bonne cinetique, une reversibilite de l'hydrogene et une duree de vie utile. Les donnees montrent que la valeur y = 0,025 offre le meilleur compromis pour developper les proprietes les plus adequates; ii) l'extension a d'autres metaux de transition pour le systeme 0,95 MgH2 + 0,05 TMHx (TM: Sc, Y, Ti, Zr, V et Nb), en evaluant la contribution de chaque additif sur la cinetique, sur la reversibilite de l'hydrogene et sur la duree de vie en cyclage; iii) la conception d'un dispositif de cyclage automatique capable de realiser des centaines de sorption/desorption dans le but de mesurer la duree de vie des hydrures metalliques. Le travail a ete effectue a l'aide de nombreuses methodes experimentales. Pour la synthese, le broyage reactif sous atmosphere d'hydrogene a ete principalement utilise. La structure cristalline et la composition chimique des nanomateriaux ont ete obtenues a partir de l'analyse par diffraction des rayons X (DRX). La taille et la morphologie des particules ont ete determinees par microscopie electronique a balayage et spectroscopie de rayons X a dispersion d'energie (SEM / EDS). Les proprietes thermodynamiques, cinetiques et cycliques de la sorption d'hydrogene ont ete determinees par la methode de Sieverts. (auteur)Original Title
Nanomateriaux a base de magnesium et de metaux de transition pour un stockage efficace de l'hydrogene
Primary Subject
Source
19 Dec 2018; 177 p; 219 refs.; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses; These Docteur de l'Universite Paris-Est, Specialite: Sciences des materiaux
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Report Number
Country of publication
ADSORPTION, CHEMICAL REACTION KINETICS, DESORPTION, HYDROGEN STORAGE, HYDROGENATION, LANTHANUM ALLOYS, MAGNESIUM HYDRIDES, MICROSTRUCTURE, NANOCOMPOSITES, NICKEL ALLOYS, SCANDIUM HYDRIDES, SCANNING ELECTRON MICROSCOPY, TIN ALLOYS, TITANIUM HYDRIDES, X-RAY DIFFRACTION, X-RAY SPECTROSCOPY, YTTRIUM HYDRIDES, ZIRCONIUM HYDRIDES
ALKALINE EARTH METAL COMPOUNDS, ALLOYS, CHEMICAL REACTIONS, COHERENT SCATTERING, DIFFRACTION, ELECTRON MICROSCOPY, HYDRIDES, HYDROGEN COMPOUNDS, KINETICS, MAGNESIUM COMPOUNDS, MATERIALS, MICROSCOPY, NANOMATERIALS, RARE EARTH ALLOYS, REACTION KINETICS, SCANDIUM COMPOUNDS, SCATTERING, SORPTION, SPECTROSCOPY, STORAGE, TITANIUM COMPOUNDS, TRANSITION ELEMENT ALLOYS, TRANSITION ELEMENT COMPOUNDS, YTTRIUM COMPOUNDS, ZIRCONIUM COMPOUNDS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue