Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.025 seconds
Schneider, Tim
Universite Paris-Saclay, Ecole doctorale no. 576, particules hadrons energie et noyau - instrumentation, image, cosmos et simulation - Pheniics, Espace Technologique, Immeuble Discovery, Route de l'Orme aux Merisiers RD 128, 91190 Saint-Aubin (France); Faculte des sciences d'Orsay, CNRS, Laboratoire de physique des 2 infinis Irene Joliot-Curie - IJCLab, 91405 Orsay (France); Institut Curie, Orsay (France)2020
Universite Paris-Saclay, Ecole doctorale no. 576, particules hadrons energie et noyau - instrumentation, image, cosmos et simulation - Pheniics, Espace Technologique, Immeuble Discovery, Route de l'Orme aux Merisiers RD 128, 91190 Saint-Aubin (France); Faculte des sciences d'Orsay, CNRS, Laboratoire de physique des 2 infinis Irene Joliot-Curie - IJCLab, 91405 Orsay (France); Institut Curie, Orsay (France)2020
AbstractAbstract
[en] Despite major advances over the last decades, the dose tolerance of normal tissue continues to be a central problem in radiation therapy, limiting for example the effective treatment of hypoxic tumours and high-grade gliomas. Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy, combining the improved ballistics of protons with the enhanced tissue sparing potential of submillimetric, spatially fractionated beams (minibeams), that has already demonstrated its ability to significantly improve the therapeutic index for brain cancers in rats. In contrast to conventional proton therapy which uses comparatively large beam diameters of five millimetres to several centimetres, minibeams require beam sizes of less than 1 mm which are challenging to create in a clinical context. So far, every implementation of pMBRT at clinically relevant beam energies could only be achieved with the help of mechanical collimators (metal blocks with thin slits or holes). However, this method is inefficient, inflexible and creates high levels of unwanted secondary particles. The optimal approach may therefore be the generation of minibeams through magnetic focussing. This thesis investigates how magnetically focussed proton minibeams can be realised in a clinical context. Starting from the computer model of a modern pencil beam scanning nozzle (the term 'nozzle' describes the final elements of a clinical beamline), it could be shown that current nozzles will not be suitable for this task, since their large dimensions and the presence of too much air in the beam path make it impossible to focus the beam down to the required sizes. Instead, an optimised nozzle design has been developed and evaluated with clinical beam models. It could be demonstrated that this design allows the generation of proton minibeams through magnetic focussing and that the new nozzle can be used with already existing technology. Moreover, a Monte Carlo study was performed to compare and quantify the differences between magnetically focussed minibeams and mechanically collimated minibeams. Finally, as the second aspect of this thesis, helium ions were evaluated as a potential alternative to protons for minibeam radiation therapy. It could be shown that helium ions could present a good compromise exhibiting many of the dosimetric advantages of heavier ions without the risks related to normal tissue toxicities (author)
[fr]
Malgre d'importants progres, la tolerance des tissus sains aux rayonnements demeure un facteur central en radiotherapie, limitant par exemple l'efficacite du traitement des gliomes de haute grade. La proton therapie avec mini-faisceaux (proton minibeam radiation therapy, pMBRT) est une nouvelle strategie therapeutique qui a pour objectif d'ameliorer la preservation des tissus sains en combinant les avantages balistiques des protons et le fractionnement spatial de la dose obtenu avec des faisceaux submillimetriques. Dans ce contexte, la pMBRT a deja demontre sa capacite a augmenter l'index therapeutique dans le traitement des tumeurs cerebrales de rats. Un defi important est la generation des minifaisceaux dans un cadre clinique: contrairement a la radiotherapie conventionnelle qui utilise des faisceaux larges (diametre d'environ 5 mm a plusieurs centimetres), les mini-faisceaux se caracterisent par un diametre de moins d'un millimetre. Actuellement, la generation des minifaisceaux de protons est realisee a l'aide de collimateurs mecaniques (blocs en metal avec plusieurs fentes ou trous) ce qui comporte plusieurs inconvenients (notamment une tres faible flexibilite, une reduction importante du debit de dose ainsi que la generation de particules secondaires indesirables). Une solution optimale pourrait etre la generation des mini-faisceaux par focalisation magnetique. Il en decoule la question principale traitee dans cette these: Comment la generation des mini-faisceaux de protons par focalisation magnetique peut-elle etre realisee dans un cadre clinique? En utilisant le modele numerique d'un pencil beam scanning nozzle (le 'nozzle' est la derniere partie d'une ligne de faisceau clinique), il a ete demontre que les nozzles actuels ne sont pas adequats pour focaliser les faisceaux de protons a la taille requise, les principales raisons etant une distance focale trop grande et une presence d'air excessive. En partant de ces conclusions, un nouveau design de nozzle optimise a ete developpe. Ce nouveau modele est capable de generer des mini-faisceaux de protons par focalisation magnetique dans des conditions realisables avec les technologies existantes. Une etude Monte Carlo a egalement ete menee afin de comparer et de quantifier les differences entre la generation de mini-faisceaux par collimation mecanique et par focalisation magnetique. Dans un second temps, cette these presente une evaluation des ions d'helium comme alternative aux protons pour la radiotherapie avec mini-faisceaux. Il a pu etre demontre que les ions d'helium peuvent etre un bon compromis en offrant certains des avantages dosimetriques observes avec les ions lourds sans les risques de toxicite associes. (auteur)Original Title
Amelioration de la generation de mini-faisceaux de protons pour la radiotherapie
Primary Subject
Secondary Subject
Source
9 Dec 2020; 291 p; [500 refs.]; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses; These de doctorat de l'universite Paris-Saclay, Specialite: radio et hadron-therapies
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Report Number
Country of publication
BEAM DYNAMICS, BEAM EMITTANCE, BEAM FOCUSING MAGNETS, BEAM SHAPING, BENCHMARKS, BRAGG CURVE, COLLIMATORS, COMPUTERIZED SIMULATION, CYCLOTRONS, DEPTH DOSE DISTRIBUTIONS, FRACTIONATED IRRADIATION, HELIUM IONS, ION BEAM THERAPY, LINEAR ACCELERATORS, MONTE CARLO METHOD, NEOPLASMS, PROTON BEAMS, QUADRUPOLES, SYNCHROTRONS
ACCELERATORS, BEAMS, CALCULATION METHODS, CHARGED PARTICLES, CYCLIC ACCELERATORS, DIAGRAMS, DISEASES, DYNAMICS, EQUIPMENT, EXTERNAL BEAM RADIATION THERAPY, INFORMATION, IONS, IRRADIATION, MAGNETS, MECHANICS, MEDICINE, MULTIPOLES, NUCLEAR MEDICINE, NUCLEON BEAMS, PARTICLE BEAMS, RADIATION DOSE DISTRIBUTIONS, RADIOLOGY, RADIOTHERAPY, SIMULATION, SPATIAL DOSE DISTRIBUTIONS, THERAPY
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue