Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.022 seconds
AbstractAbstract
[en] Three-dimensional deterministic core calculations are typically based on the classical two-step approach, where the homogenized cross sections of an assembly type are pre-calculated and then interpolated to the actual state in the reactor. The weighting flux used for cross-section homogenization is determined assuming the fundamental mode condition and using a critical-leakage model that does not account for the actual environment of an assembly. On the other hand, 3D direct transport calculations and the 2D/1D Fusion method, mostly based on the method of characteristics, have recently been applied showing excellent agreement with reference Monte-Carlo code, but still remaining computationally expensive for multiphysics applications and core depletion calculations. In the present work, we propose a method of Dynamic Homogenization as an alternative technique for 3D core calculations, in the framework of domain decomposition method that can be massively parallelized. It consists of an iterative process between core and assembly calculations that preserves assembly exchanges. The main features of this approach are: i) cross-sections homogenization takes into account the environment of each assembly in the core; ii) the reflector can be homogenized with its realistic 2D geometry and its environment; iii) the method avoids expensive 3D transport calculations; iv) no 'off-line' calculation and therefore v) no cross-section interpolation is required. The verification tests on 2D and 3D full core problems are presented applying several homogenization and equivalence techniques, comparing against direct 3D transport calculation. For this analysis, we solved the NEA 'PWR MOX/UO2 Core Benchmark' problem, which is characterized by strong radial heterogeneities due to the presence of different types of UOx and MOx assemblies at different burnups. The obtained results show the advantages of the proposed method in terms of precision with respect to two-step and performances with respect to the direct approach. (author)
[fr]
Dans les calculs de reacteurs a trois dimensions, nombreuses techniques d'homogeneisation ont ete developpees pour l'utilisation du schema de calcul classique a deux etapes, base sur les sections efficaces homogeneisees au prealable et utilisees ensuite par interpolation pour un etat physique donne. D'autre part, les schemas de calcul bases principalement sur les methodes des caracteristiques, qui visent le calcul direct du reacteur sans homogeneisation, ont des performances encore limitees en raison des capacites des machines et font alors le recours a des solutions de transport simplifiees. Ce travail a pour objectif d'etudier une nouvelle approche dans laquelle l'homogeneisation dynamique est utilisee pour produire le flux neutronique de ponderation sur les modeles d'assemblage tridimensionnels. L'application de la methode pour un calcul d'un REP en 3D est comparee aux resultats issus d'un calcul de reference numerique en transport 3D et d'un calcul classique a deux-etapes. La realisation repose sur le calcul de haute performance et avec un haut niveau de parallelisme. (auteur)Original Title
Une methode d'homogeneisation dynamique pour les calculs de reacteurs nucleaires
Primary Subject
Secondary Subject
Source
22 Oct 2020; 254 p; 85 refs.; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses; Energie Nucleaire
Record Type
Report
Literature Type
Thesis/Dissertation
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue