Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.022 seconds
AbstractAbstract
[en] Future sodium cooled fast reactors (SFRs) have to fulfill the GEN-IV requirements of enhanced safety, minimal waste production, increased proliferation resistance and high economical potential. This PhD project is dedicated to the evaluation of the impact of innovative fuels (especially minor actinides bearing oxide sphere-pac fuels) on the safety performance of advanced SFRs with transmutation option. The SIMMER-III code, originally tailored to mechanistically analyze later phases of core disruptive accidents, is employed for accident simulations. During the PhD project, the code has been extended for a better simulation of the early accident phase introducing the treatment of thermal expansion reactivity effects and for taking into account the specifics of sphere-pac fuels (thermal conductivity and gap conditions). The entire transients (from the initiating event to later accident phases) have been modeled with this extended SIMMER version. Within this PhD work, first the thermo-physical properties of sphere-pac fuel have been modeled and cast into SIMMER-III. Then, a new computational method to account for thermal expansion feedbacks has been developed to improve the initiation phase modeling of the code. The technique has the potential to evaluate these reactivity feedbacks for a fixed Eulerian mesh and in a spatial kinetics framework. At each time step, cell-wise expanded dimensions and densities are calculated based on temperature variations. Density factors are applied to the expanded densities to get an equivalent configuration (in reactivity) with original dimensions and modified densities. New cross sections are calculated with these densities and the reactivity of the equivalent configuration is computed. The developed methods show promising results for uniform and non-uniform expansions. For non-uniform expansions, model improvement needs have been identified and neutronics simulations have been carried out to support future SIMMER extensions. Preliminary results are encouraging. In the third part of the PhD, two core designs with conventional and sphere pac fuels are compared with respect to their transient behavior. These designs were established in the former CP-ESFR project: the working horse core and the optimized CONF2 core (with a large sodium plenum above the core for coolant void worth reduction). The two fuel design options are compared for steady state and transient conditions (Unprotected Loss of Flow accident, ULOF) either at beginning of life (BOL) or under irradiated conditions. Analyses for sphere-pac fuel reveal two main phases to consider at BOL. At start-up, the non-restructured sphere-pac fuel shows a low thermal conductivity compared to pellet fuel of same density. However, the fuel restructures quickly (in a few hours) due to the high thermal gradients and its thermal conductivity recovers. The fuel then shows a behavior close to the pellet one. The study also shows that the CONF2 core leads to a very mild transient for a ULOF accident at BOL. The large upper sodium plenum seems to effectively prevent large positive reactivity insertions. However, stronger reactivity and power peaks are observed under irradiated conditions or when americium is loaded in the core and lower axial blanket. This PhD work demonstrates, under current simulation conditions, that sphere-pac fuels do not seem to cause specific safety issues compared to standard pellet fuels, when loaded in SFRs. The accurate simulation of core thermal expansion reactivity feedbacks by means of the extended SIMMER version plays an important role in the accident timing (simulations confirm the expected delay in the first power peak) and on the energetic potential compared to the case where these feedbacks are omitted. The analyses also confirm the mitigating impact of a large sodium plenum on transients with voiding potential. The behavior of sphere-pac fuel in these conditions opens a perspective to its practical application in SFRs. (author)
[fr]
Les futurs reacteurs a neutrons rapides refroidis au sodium (RNR-Na) doivent remplir les criteres GEN-IV a savoir presenter des qualites d'economie, de surete amelioree, de resistance a la proliferation et de minimisation des dechets. Ce projet de these est dedie a l'etude de l'impact des combustibles innovants (specialement le combustible oxyde sphere-pac charge en actinides mineurs) sur les performances de surete des RNR-Na dedies a la transmutation. Le code de calcul SIMMER-III, developpe a l'origine pour les phases avancees d'un accident grave, est utilise pour les simulations. Ce code a ete etendu dans le cadre de cette these afin d'ameliorer la simulation de la phase primaire de l'accident, en introduisant le traitement des effets en reactivite lies a la dilatation du coeur et les specificites du combustible sphere-pac (conductivite thermique, gap). Les transitoires complets (de la phase d'initiation aux phases avancees) sont simules avec cette version etendue du code. Dans le cadre de cette these, les proprietes thermiques du combustible sphere-pac ont ete modelisees et adaptees a SIMMER. Une methodologie innovante tenant compte des effets en reactivite lies a la dilation thermique du coeur dans un maillage Eulerien et dans le cadre de la cinetique spatiale a ensuite ete developpee. A chaque pas de temps, les dimensions et densites dilatees sont calculees pour chaque cellule suite aux variations de temperatures. Des facteurs correctifs sont appliques aux densites dilatees pour obtenir une configuration equivalente (en reactivite) ayant les dimensions non-dilatees et des densites modifiees. De nouvelles sections efficaces sont calculees a partir de ces densites et l'effet en reactivite lie a la dilatation est calcule. Les resultats sont prometteurs pour des dilatations uniformes et non-uniformes. Des limitations dans le cas de dilatations non-uniformes ont ete identifiees et des calculs neutroniques ont ete effectues en vue de futurs developpements SIMMER. Les resultats preliminaires sont encourageants. Enfin, deux coeurs RNR-Na, issus du precedent projet CP-ESFR, ont ete modelises avec des combustibles sphere-pac: le Working Horse et le CONF2 (presentant un plenum sodium elargi pour une diminution de l'effet de vide sodium). Des analyses de surete ont ete effectuees afin de fournir une premiere evaluation du comportement du combustible sphere-pac compare au combustible pastille. Les deux options sont analysees en situation nominale et accidentelle (accident de perte de debit primaire) en debut de vie du coeur et apres irradiation. Les analyses revelent deux phases a considerer en debut de vie pour le combustible sphere-pac. Au demarrage du reacteur, ce combustible n'est pas restructure et sa conductivite thermique est tres inferieure a celle du combustible pastille. Apres quelques heures sous irradiation, il se restructure suite aux importants gradients de temperature, ce qui ameliore sa conductivite. Il se comporte alors de facon similaire au combustible pastille. Ce travail a egalement permis d'evaluer le comportement accidentel du coeur CONF2 qui subit un transitoire doux, prouvant que le large plenum sodium previent efficacement de larges insertions de reactivite positive. Cependant, avec l'ajout d'americium ou suite a l'irradiation, des excursions de puissance et de reactivite plus prononcees sont observees. Ce travail a permis de demontrer que le combustible sphere-pac ne semble pas causer de problemes de surete specifiques compare au combustible pastille, dans les conditions de simulations actuelles. La prise en compte des effets en reactivite lies a la dilatation du coeur avec cette version etendue de SIMMER retarde et reduit le potentiel energetique lors d'un accident. Les analyses confirment egalement l'action attenuante du plenum sodium sur les transitoires conduisant a la vidange du sodium du coeur. Le comportement du combustible sphere pac dans ces conditions ouvre une perspective a son utilisation en RNR-NaOriginal Title
Impact des combustibles sphere-pac innovants sur les performances de surete des reacteurs a neutrons rapides refroidis au sodium
Primary Subject
Source
18 Aug 2015; 319 p; 200 refs.; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses; Mecanique des Fluides, Energetique, Procedes
Record Type
Report
Literature Type
Thesis/Dissertation
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue