Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
AbstractAbstract
[en] A method for calculating induced-emission cross sections in neodymium laser glasses, based on simple absorbance measurements, has been demonstrated. Absorption and emission transition probabilities of four silicate-base neodymium laser glasses have been characterized in terms of the Judd--Ofelt (JO) model of crystal-field-induced electric-dipole transitions. Absolute absorption intensities in 3669A, ED-2, LSG-91H, and S33 glasses were measured and used to determine three phenomenological intensity parameters for each glass which accounted for the measured intensities to within 5 percent (rms). Emission intensities between the metastable 4F/sub 3/2/ and terminal 4I J levels were then calculated for each glass, together with the 4F/sub 3/2/ radiative lifetime, fluorescence branching ratios, and radiative quantum efficiency. Calculated values of these quantities for 3669A and S33 glasses are compared with measured values appearing in the literature. Using experimental line shapes for the 4F/sub 3/2/ → 4I/sub 11/2/ transitions at 1.06 μ, induced-emission cross sections for these glasses were calculated. (U.S.)
Primary Subject
Record Type
Journal Article
Journal
IEEE (Inst. Electr. Electron. Eng.) J. Quant. Electron; v. QE-10(4); p. 450-457
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue