Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] Reference is made to recent experimentation at the CERN intersecting storage ring (ISR) and experimentation at Fermilab. This is stated to have opened up a wide new domain as regards energy considerations. The ISR spans the 250 to 2000 GeV domain, whereas the Fermilab facilities reach 500 GeV. The many processes already studied are stated to show strikingly different energy behaviour. These commands do not attempt any systematic review of lns physics, but emphasise only a few important facts and questions. Three topics considered are (i) rising cross sections and related phenomena, (ii) scaling and short range order; and (iii) inelastic diffractive phenomena. Regarding (i) it is stated that all phenomena directly related to rising cross sections are amenable to simple logarithmic parametrisations that fit well with what is expected for very high energy behaviour. The very slow pace at which this occurs, however, remains a puzzle. With regard to (ii) the impressive stability of the phase space configuration of multiparticle events is stressed, which is translated in practice by scaling and short range order. Regarding (iii) diffractive excitation is an important topic in high energy hadron physics, and double diffractive excitation is an interesting study. It is stated that the stability of all large cross section hadronic processes with increasing energy is remarkable, and it is not understood why so many things change so slowly with increasing energy. What can be referred to as lns physics still carries many challenging questions. (U.K.)
Primary Subject
Record Type
Journal Article
Journal
Comments on Nuclear and Particle Physics; v. 6(5); p. 133-141
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue