Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
AbstractAbstract
[en] The field of coherent spectroscopy of two-level systems is applied to the lowest triplet state of organic molecules. By neglecting the triplet sublevel not coupled by the field, it is possible to describe the remaining two levels with Feynman-Vernon-Hellwarth geometrical representation of a general two-level system. The equations of motion of the pseudomagnetization are derived after transformation to the rotating frame, as are Bloch-type equations which include phenomenological relaxation times. The loss of coherence due to exchange between triplet states with different Larmor frequencies but identical zero-field dipolar tensor axes is then discussed. By writing two sets of coupled Bloch equations, expressions for the effective decay rate and frequency shift of the experimentally monitored triplet system are derived and discussed in the limits of slow and rapid exchange. This analysis is applied to intramolecular tunneling between different configurations of cyclopentanone. It is shown by both spin locking and CW spectra that the tunneling rate is considerably slower than the phosphorescence decay rate of the lowest triplet state. Rotary echoes are considered, both on- and off-resonance, with Average Hamiltonian theory. It is shown that relaxation fields perpendicular to the driving field are averaged while those parallel to it are not. The inhomogeneity in the broadening mechanism is completely removed by on-resonance rotary echoes but only partially eliminated by off-resonance rotary echoes. Calculations for off-resonance rotary echo intensities are presented and extended to include triplet sublevel population kinetics and inhomogeneous broadening. Finally, experimental observation of rotary echoes in several 1,2,4,5-Tetrachlorobenzene systems is reported and compared with the theoretical predictions made
Primary Subject
Source
Feb 1978; 110 p; Available from NTIS., PC A06/MF A01
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue