Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
van Rooyen, D.; Weeks, J.R.
Brookhaven National Lab., Upton, N.Y. (USA)1977
Brookhaven National Lab., Upton, N.Y. (USA)1977
AbstractAbstract
[en] The recent plant operating experience and laboratory test results on the phenomenon of denting in recirculating PWR steam generators is reviewed. Although denting was first reported only in plants that were converted from phosphate to AVT, it has now also been observed in plants still on phosphate, as well as in some that started on AVT. In some units, slightly abnormal eddy current signals have been observed at the top of the tube sheets. The degree of denting in operating steam generators may be related to the levels and duration of chloride inleakage. Chloride, however, is not the only active ingredient, and does not seem to give denting until local acid conditions arise; consequently, it may be necessary for soluble copper and/or nickel ions to be present to promote the denting reaction. Chloride concentrations in actively corroding crevices can increase by several orders of magnitude over the bulk coolant. It is thus difficult to develop a basis for Cl- specifications for secondary water. Maintaining Cl- low enough to prevent denting may be unmanageable without full flow condensate demineralization in coastal plants with copper alloy condensors and feedwater lines. Cathodic depolarization by oxidizing species are thought to promote the formation of acid chlorides in crevices and trigger the denting reactions; some ions may also catalyze the rapid formation of magnetite. These, and other mechanistic aspects of denting are discussed. The implications of the Inconel 600 tube defects at Ginna in non-dented areas, originating from the primary side, are also discussed
Primary Subject
Source
Aug 1977; 38 p; Available from NTIS., PC A03/MF A01
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue