Backlund, Sandra; Thollander, Patrik, E-mail: sandra.backlund@naturvardsverket.se, E-mail: patrik.thollander@liu.se2015
AbstractAbstract
[en] The Swedish energy audit program is a publicly financed program, mainly targeting small and medium-sized firms to help them finance energy audits. By examining suggested and implemented energy efficiency measures from the energy audits conducted in 241 firms in the program, the aim of this paper is to examine the energy efficiency implementation gap and the cost efficiency of the program. The audits show that the firms' average annual energy efficiency improvement potential is between 860 and 1270 MWh/year which corresponds to a total energy efficiency improvement potential of between 6980 and 11,130 MWh/firm. The implementation rate of the suggested energy efficiency improvement measures in the SEAP is 53%. The program has resulted in investments in energy efficiency improvements between €74,100and €113,000/firm. - Highlights: • Auditors find an energy efficiency improvement potential of 460–660 MWh/year/firm. • The implementation rate of the suggested measures is 53%. • The total cost per MWh lie between €87 and €114/MWh. • Public costs in the SEAP are €0.7–€1.3/MWh
Primary Subject
Source
S0360-5442(14)01448-0; Available from http://dx.doi.org/10.1016/j.energy.2014.12.068; Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Using industrial excess heat in District Heating (DH) networks reduces the need for primary energy and is considered efficient resource use. The conditions of Swedish DH markets are under political discussion in the Third Party Access (TPA) proposal, which would facilitate the delivery of firms' industrial excess heat to DH networks. This paper estimates and discusses the untapped potential for excess heat deliveries to DH networks and considers whether the realization of this potential would be affected by altered DH market conditions. The results identify untapped potential for industrial excess heat deliveries, and calculations based on estimated investment costs and revenues indicate that realizing the TPA proposal could enable profitable excess heat investments. - Highlights: ► The paper identifies untapped potentials for industrial excess heat deliveries in Sweden. ► Unused primary and secondary heat potentials of circa 2 TWh/year and 21 TWh/year are identified. ► The paper indicates that realizing the TPA proposal could enable profitable excess heat investments.
Primary Subject
Source
S0301-4215(12)00713-6; Available from http://dx.doi.org/10.1016/j.enpol.2012.08.031; Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Thollander, Patrik; Backlund, Sandra; Trianni, Andrea; Cagno, Enrico, E-mail: patrik.thollander@liu.se2013
AbstractAbstract
[en] Highlights: • Results are based on a questionnaire in the European foundry industry. • The energy efficiency potential is assed to be 7.5% of the total energy use. • Most important drivers to and barriers for energy efficiency are financial followed by organizational. • EPC is used among 23% of the foundries, third party financing among 12%. • Large energy management improvement potentials are uncovered. - Abstract: Energy management plays an important role in the transformation of industrial energy systems towards improved energy efficiency and increased sustainability. This paper aims to study driving forces for improved energy efficiency in some European energy-intensive foundry industries. The investigation has been conducted as a multiple case study involving 65 foundries located in Finland, France, Germany, Italy, Poland, Spain, and Sweden. The most relevant perceived driving forces were found to be financially related, followed by organizational driving forces. Nevertheless, some differences can be appreciated according to the firm’s size and country. Almost half of the studied foundries lack a long-term energy strategy, about one-fourth stated that they have used Energy Performance Contracting (EPC), and only approximately one in ten foundries have used Third Party Financing (TPF). Among the studied foundries, three out of five have conducted an energy audit. On average, the energy saving potential according to the respondents is stated to be 7.5%. In conclusion, energy management in the European foundry industry, despite increasing energy prices and extensive energy policy actions taken by the EU, still seems to have great improvement potential, calling for future research and policy actions in the field
Primary Subject
Source
S0306-2619(13)00437-6; Available from http://dx.doi.org/10.1016/j.apenergy.2013.05.036; Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Backlund, Sandra; Thollander, Patrik; Palm, Jenny; Ottosson, Mikael, E-mail: sandra.backlund@liu.se2012
AbstractAbstract
[en] In order to reach the EU: s 20–20–20 primary energy savings target, energy efficiency needs to increase. Previous research on energy use and energy efficiency has focused mainly on the diffusion of energy efficient technologies. The discrepancy between optimal and actual implementation of energy efficient technologies has been illustrated in numerous articles and is often referred to as the energy efficiency gap. However, efficient technologies are not the only ways to increase energy efficiency. Empirical studies have found that a cost-effective way to improve energy efficiency is to combine investments in energy-efficient technologies with continuous energy management practices. By including energy management into an estimated energy efficiency potential this paper introduces an extended energy efficiency gap, mainly in manufacturing industries and the commercial sector. The inclusion of energy management components in future energy policy will play an important role if the energy savings targets for 2020, and later 2050, are to be met in the EU. - Highlights: ► Theoretical contributions examining the role of energy management have been rare. ► Studies have illustrated that adaptation levels of energy management are low. ► By including energy management this paper introduces an extended energy efficiency gap.
Primary Subject
Source
S0301-4215(12)00724-0; Available from http://dx.doi.org/10.1016/j.enpol.2012.08.042; Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue