AbstractAbstract
[en] Magnetic exfoliated vermiculite is a synthetic nanocomposite that quickly and efficiently absorbs organic compounds such as oil from water bodies. It was developed primarily to mitigate pollution, but the possible adverse impacts of its application have not yet been evaluated. In this context, the acute toxicity of magnetic exfoliated vermiculite and exfoliated vermiculite was herein assessed by genotoxic and histopathological biomarkers in zebrafish (Danio rerio). DNA fragmentation was statistically significant for all groups exposed to the magnetic exfoliated vermiculite and for fish exposed to the highest concentration (200 mg/L) of exfoliated vermiculite, whereas the micronucleus frequency, nuclear abnormalities and histopathological alterations were not statistically significant for the fish exposed to these materials. In the intestinal lumen, epithelial cells and goblet cells, we found the presence of magnetic exfoliated vermiculite and exfoliated vermiculite, but no alterations or presence of the materials-test in the gills or liver were observed. Our findings suggest that the use of magnetic exfoliated vermiculite and exfoliated vermiculite during standard ecotoxicological assays caused DNA damage in D. rerio, whose alterations may be likely to be repaired, indicating that the magnetic nanoparticles have the ability to promote genotoxic damage, such as DNA fragmentation, but not mutagenic effects. - Highlights: • MEV is a synthetic nanocomposite that quickly and efficiently absorbs organic compounds such as oil from water bodies. • The use of MEV and EV during standard ecotoxicological assays caused DNA fragmentation in zebrafish. • The magnetic nanoparticles showed ability to promote genotoxic damage, but did not induce micronucleus in peripheral erythrocytes at 96 h of exposure. • The tested concentrations of MEV and EV do not cause significant histopathological alterations in the gills, liver and intestine of zebrafish.
Primary Subject
Source
S0048-9697(16)30048-1; Available from http://dx.doi.org/10.1016/j.scitotenv.2016.01.048; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
BIOLOGICAL MATERIALS, BLOOD, BLOOD CELLS, BODY, BODY FLUIDS, CHALCOGENIDES, DIGESTIVE SYSTEM, DIMENSIONLESS NUMBERS, ELEMENTS, GASTROINTESTINAL TRACT, GLANDS, HYDROGEN COMPOUNDS, INORGANIC ION EXCHANGERS, ION EXCHANGE MATERIALS, IRON COMPOUNDS, MATERIALS, METALS, MICA, MINERALS, NANOMATERIALS, NUCLEIC ACIDS, ORGANIC COMPOUNDS, ORGANS, OTHER ORGANIC COMPOUNDS, OXIDES, OXYGEN COMPOUNDS, PARTICLES, RESPIRATORY SYSTEM, SILICATE MINERALS, TRANSITION ELEMENT COMPOUNDS, TRANSITION ELEMENTS
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Highlights: • Humic acid-HA, NaHCO3, MgSO4, KCl and CaCl2 change the stability and oxidation state of silver nanoparticle-AgNPs surface. • Ag3+ is formed on AgNPs surface mainly in presence of NaHCO3, MgSO4 and HA. • Toxicological endpoints in zebrafish embryos exposed to Ag3+ were not significant for acute exposure. • HA coated on AgNPs surface reduces the concentration of Ag ions released and the toxicity in zebrafish embryos. • HA acts as a natural attenuator/remediator of polluted water with AgNPs. - Abstract: The use of silver nanoparticles (AgNPs) result in an inevitable contact with aquatic environments. Here we study the behavior of AgNPs and the developmental toxicity in zebrafish embryos exposed to these nanoparticles (0–10 mg/L) with and without the presence of HA (20 mg/L), using zebrafish facility water (ZFW) and zebrafish growing media (ZGM). The presence of cations and HA gave rise to a decrease in Ag ion release and ζ-potential, an increase in the hydrodynamic diameter and oxidation of the AgNP surface. The results show that the presence of HA and cations in the media, as well as the silver speciation, i.e., the unusual presence of Ag3+, decreases the toxicity of AgNPs (LC50AgNPs: 1.19 mg/L; LC50AgNPs+HA: 3.56 mg/L), as well as silver bioavailability and toxicity in zebrafish embryos. Developmental alterations and the LC50 (1.19 mg/L) of AgNPs in ZFW were more relevant (p ≤ 0.05) than for AgNPs in ZGM (LC50 > 10 mg/L). It was demonstrated that the bioaccumulation and toxicity of AgNPs depends on several factors including AgNPs concentration, nanoparticle aggregation, dissolved silver ions, speciation of silver ions, the amount of salt in the environment, the presence of humic substances and others, and different combinations of all of these factors.
Primary Subject
Source
S0304389418302437; Available from http://dx.doi.org/10.1016/j.jhazmat.2018.04.019; Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
ALKALI METAL COMPOUNDS, ALKALINE EARTH METAL COMPOUNDS, CALCIUM COMPOUNDS, CALCIUM HALIDES, CARBON COMPOUNDS, CARBONATES, CHLORIDES, CHLORINE COMPOUNDS, ELEMENTS, HALIDES, HALOGEN COMPOUNDS, MAGNESIUM COMPOUNDS, METALS, OXYGEN COMPOUNDS, PARTICLES, SODIUM COMPOUNDS, SULFATES, SULFUR COMPOUNDS, TRANSITION ELEMENTS
Publication YearPublication Year
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue