Luo Chuanwen; Wang Chuncheng; Wei, Junjie, E-mail: lcw1234562000@yahoo.com.cn, E-mail: wangchuncheng@hit.edu.cn2009
AbstractAbstract
[en] In this paper, k step chaometry (k SCM) is defined based on monopolized sphere and instantaneous chaometry (ICM), and the convergent theorem of asymptotical periodic orbit is also proved. The 400 SCM of the discrete model of Lorenz system is calculated and results disclose that 400 SCM can clearly identify the parameters of chaotic dynamic system. The EEG instrument is applied to measure time series of EEG, and it is observed that the instantaneous chaometry of the EEG and the data generated from Lorenz attractor produce similar results.
Primary Subject
Source
S0960-0779(07)00424-9; Available from http://dx.doi.org/10.1016/j.chaos.2007.06.049; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Chaos, Solitons and Fractals; ISSN 0960-0779;
; v. 39(4); p. 1831-1838

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Luo Chuanwen; Wang Gang; Wang Chuncheng; Wei Junjie, E-mail: lcw1234562000@yahoo.com.cn, E-mail: wangchuncheng@hit.edu.cn2009
AbstractAbstract
[en] The concepts of uniform index and expectation uniform index are two mathematical descriptions of the uniformity and the mean uniformity of a finite set in a polyhedron. The concepts of instantaneous chaometry (ICM) and k step chaometry (k SCM) are introduced in order to apply the method in statistics for studying the nonlinear difference equations. It is found that k step chaometry is an indirect estimation of the expectation uniform index. The simulation illustrate that the expectation uniform index for the Lorenz System is increasing linearly, but increasing nonlinearly for the Chen's System with parameter b. In other words, the orbits for each system become more and more uniform with parameter b increasing. Finally, a conjecture is also brought forward, which implies that chaos can be interpreted by its orbit's mean uniformity described by the expectation uniform index and indirectly estimated by k SCM. The k SCM of the heart rate showes the feeble and old process of the heart.
Primary Subject
Source
S0960-0779(08)00251-8; Available from http://dx.doi.org/10.1016/j.chaos.2008.05.010; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Chaos, Solitons and Fractals; ISSN 0960-0779;
; v. 41(3); p. 1294-1300

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Luo Chuanwen; Yi Chundi; Wang Gang; Li Longsuo; Wang Chuncheng, E-mail: lcw1234562000@yahoo.com.cn, E-mail: wangchuncheng@hit.edu.cn2009
AbstractAbstract
[en] Uniform index is a conception that can describe the uniformity of a finite point set in a polyhedron, and is closely related to chaos. In order to study uniform index, the concept of contained uniform index is defined, which is similar to uniform index and has good mathematical properties. In this paper, we prove the convergence of the contained uniform index, and develop the base of proving the convergence of uniform index.
Primary Subject
Source
S0960-0779(09)00341-5; Available from http://dx.doi.org/10.1016/j.chaos.2009.03.181; Copyright (c) 2009 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Chaos, Solitons and Fractals; ISSN 0960-0779;
; v. 42(5); p. 2748-2753

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue