Filters
Results 1 - 10 of 16389
Results 1 - 10 of 16389.
Search took: 0.032 seconds
Sort by: date | relevance |
Zhou, Y; Matthaeus, W H
Lawrence Livermore National Lab., Livermore, CA (United States). Funding organisation: US Department of Energy (United States)2005
Lawrence Livermore National Lab., Livermore, CA (United States). Funding organisation: US Department of Energy (United States)2005
AbstractAbstract
[en] Magnetohydrodynamics (MHD) turbulence theory, often employed satisfactorily in astrophysical applications, has often focused on parameter ranges that imply nearly equal values of kinetic and magnetic energies and length scales. However, MHD flow may have disparity magnetic Prandtl number, dissimilar kinetic and magnetic Reynolds number, different kinetic and magnetic outer length scales, and strong anisotropy. Here a phenomenology for such ''non-equipartitioned'' MHD flow is discussed. Two conditions are proposed for a MHD flow to transition to strong turbulent flow, extensions of (1) Taylor's constant flux in an inertial range, and (2) Kolmogorov's scale separation between the large and small scale boundaries of an inertial range. For this analysis, the detailed information on turbulence structure is not needed. These two conditions for MHD transition are expected to provide consistent predictions and should be applicable to anisotropic MHD flows, after the length scales are replaced by their corresponding perpendicular components. Second, it is stressed that the dynamics and anisotropy of MHD fluctuations is controlled by the relative strength between the straining effects between eddies of similar size and the sweeping action by the large-eddies, or propagation effect of the large-scale magnetic fields, on the small scales, and analysis of this balance in principle also requires consideration of non-equipartition effects
Primary Subject
Secondary Subject
Source
UCRL-JRNL--209624; W-7405-ENG-48; Publication date is May 1, 2005; PDF-FILE: 27; SIZE: 0.2 Megabytes
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Orth, Charles D.
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States). Funding organisation: USDOE (United States)2016
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States). Funding organisation: USDOE (United States)2016
AbstractAbstract
[en] We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot ''mix'' may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields – not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or ''grains'' of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation, and (2) this solid material spalls under shock loading and sudden decompression. Finally, we describe this mix mechanism, support it with simulations and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility
Primary Subject
Secondary Subject
Source
LLNL-JRNL--668926; OSTIID--1241970; AC52-07NA27344; Available from: DOI:10.1063/1.4942481; DOE Accepted Manuscript full text, or the publishers Best Available Version will be available free of charge after the embargo period from OSTI using http://www.osti.gov/pages/biblio/1241970
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
No abstract available
Primary Subject
Source
(c) 1994 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.
Primary Subject
Source
(c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] The velocity-space distribution of alpha particles born in fusion devices is subject to modification at moderate energies due to turbulent transport. Therefore, one must calculate the evolution of an equilibrium distribution whose functional form is not known a priori. Using a novel technique, applicable to any trace impurity, we have made this calculation for fully nonlinear gyrokinetic simulations not only possible but also particularly efficient. We demonstrate a microturbulence-induced departure from the local slowing-down distribution, an inversion of the energy distribution, and associated modifications to the alpha heating and pressure profiles in an ITER-like scenario.
Primary Subject
Source
(c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Ren, Haijun, E-mail: hjren@ustc.edu.cn2016
AbstractAbstract
[en] The gyro-kinetic equation is analytically solved based on the anisotropic two-temperature distribution, in which the ions' parallel temperature is a flux function while the perpendicular temperature depends on the poloidal angle. The residual level of collisionless zonal flows (ZFs) is derived and calculated in the large aspect circular limit. Our result shows that the anisotropy plays a remarkable role in determining the residual value of ZFs. Even weak anisotropy can significantly change the residual level.
Primary Subject
Source
(c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Rubinstein, B.; Doron, R.; Maron, Y.; Fruchtman, A.; Mehlhorn, T. A., E-mail: ramy.doron@weizmann.ac.il2016
AbstractAbstract
[en] We report on the first experimental verification of the traveling-wave-like picture of a magnetic-field and an associated electric potential hill propagating non-diffusively in low resistivity plasma. High spatial resolution spectroscopic method, developed here, allowed for obtaining the detailed shape of the propagating magnetic-field front. The measurements demonstrated that the ion separation, previously claimed, results from the reflection of the higher charge-to-mass ratio ions from the propagating potential hill and from climbing the hill by the lower charge-to-mass ratio ions. This ion dynamics is found to be consistent with the observed electron density evolution.
Primary Subject
Source
(c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Chen, Tianxing; Lu, Ronghua; Guo, Li; Han, Shensheng, E-mail: lurh@siom.ac.cn2016
AbstractAbstract
[en] The collective plasma oscillations are investigated in ultracold neutral plasma with a non-uniform density profile. Instead of the plane configuration widely used, we derive the plasma oscillation equations with spherically symmetric distribution and Gaussian density profile. The damping of radial oscillation is found. The Tonks–Dattner resonances of the ultracold neutral plasma with an applied RF field are also calculated.
Primary Subject
Source
(c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] The fixed boundary toroidal plasma equilibria with toroidal flows are investigated by solving the modified Grad-Shafranov equation numerically in the cylindrical coordinate system. For normal equilibrium configurations with geometry and profiles similar to usual tokamaks with no flow, it is found that the effect of flow is to lead to an outward shift of the magnetic flux surfaces, together with the profiles of pressure, and mass and current densities. The shifts could become significant when the toroidal flow Mach number exceeds 0.5. For non-conventional current profiles, even for the usual tokamak geometry, novel current reversal equilibrium configurations may result, sometimes with changed topology in the poloidal flux function. This change in the topology of plasma equilibrium can be attributed to the large toroidal flow. The computed results may correspond to situations of intense tangential injection during the low toroidal current phase in expected experimental situations.
Primary Subject
Source
(c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Zhang, Shen; Kang, Wei; Wang, Hongwei; Zhang, Ping; He, X. T., E-mail: weikang@pku.edu.cn, E-mail: zhang-ping@iapcm.ac.cn, E-mail: xthe@iapcm.ac.cn
arXiv e-print [ PDF ]2016
arXiv e-print [ PDF ]2016
AbstractAbstract
[en] An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.
Primary Subject
Source
(c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
1 | 2 | 3 | Next |