Tradeoffs in fuel cycle performance for most promising options - 15346
Taiwo, T.; Kim, T.K.; Feng, B.; Stauff, N.; Hoffman, E.; Ganda, F.; Todosow, M.; Brown, N.; Raitses, G.; Gehin, J.; Powers, J.; Youinou, G.; Hiruta, H.; Wigeland, R.
ICAPP 2015 Proceedings
ICAPP 2015 Proceedings
AbstractAbstract
[en] A recent Evaluation and Screening (E/S) study of nuclear fuel cycle options was conducted by grouping all potential options into 40 Evaluation Groups (EGs) based on similarities in fundamental physics characteristics and fuel cycle performance. Through a rigorous evaluation process considering benefit and challenge metrics, 4 of these EGs were identified by the E/S study as 'most promising'. All 4 involve continuous recycle of U/Pu or U/TRU with natural uranium feed in fast critical reactors. However, these most promising EGs also include fuel cycle groups with variations on feed materials, neutron spectra, and reactor criticality. Therefore, the impacts of the addition of natural thorium fuel feed to a system that originally only used natural uranium fuel feed, using an intermediate spectrum instead of a fast spectrum, and using externally-driven systems versus critical reactors were evaluated. It was found that adding thorium to the natural uranium feed mixture leads to lower burnup, higher mass flows, and degrades fuel cycle benefit metrics (waste management, resource utilization, etc.) for fuel cycles that continuously recycle U/Pu or U/TRU. Adding thorium results in fissions of 233U instead of just 239Pu and in turn results in a lower average number of neutrons produced per absorption (η) for the fast reactor system. For continuous recycling systems, the lower η results in lower excess reactivity and subsequently lower achievable fuel burnup. This in turn leads to higher mass flows (fabrication, reprocessing, disposal, etc.) to produce a given amount of energy and subsequent lower metrics performance. The investigated fuel cycle options with intermediate spectrum reactors also exhibited degraded performance in the benefit metrics compared to fast spectrum reactors. Similarly, this is due to lower η values as the spectrum softens. The best externally-driven systems exhibited similar performance as fast critical reactors in terms of mass flows, but they face much greater challenges, including higher waste generation and higher economic and development costs associated with the external neutron supply. Therefore, any fuel cycle option within the most promising EGs that include thorium in the feed mixture, involves intermediate spectrum reactors, or uses externally-driven systems will be less promising than the reference fast spectrum critical reactor with only natural uranium feed. (authors)
Primary Subject
Secondary Subject
Source
Societe Francaise d'Energie Nucleaire (SFEN), 75 - Paris (France); 3390 p; 2015; p. 2741-2749; ICAPP 2015: Nuclear Innovations for a low-carbon future; Nice (France); 3-6 May 2015; Available (USB stick) from: SFEN, 103 rue Reaumur, 75002 Paris (France); 10 refs.; This record replaces 48095477
Record Type
Book
Literature Type
Conference
Country of publication
Descriptors (DEI)
Descriptors (DEC)
Publication YearPublication Year
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue